

An Exceptional Class

by
Peter Lavin

June 1, 2004

Overview

When a method throws an exception, Java requires that it be caught. Some
exceptions require action on the programmer’s part and others simply need to be
reported to the user. The Java class that we will develop in this article is
concerned with the latter type of exception.

Instead of rewriting code every time you need to catch an exception, you can
create a class to do most of the work for you.

An Exceptional Class Page 1

Introduction

In a previous article, Java Help Files, we discussed how to create a class for
displaying help files. Here we will take the same approach to handling
exceptions. In some cases, exceptions can be handled quietly in the background
without notifying the end user. However, we are concerned with the situations
where it makes sense to display error messages.

The code to do this is not very complicated but gets a bit more interesting when
we try to format the way our error message is displayed. We will show a few
different approaches to doing this. We might have some fun along the way –
taking different methods out for a spin and seeing how they drive.

The Code

Briefly described, this class uses a JOptionPane to display a dialogue box
showing the exception type in the title bar and the error message in the body.
Error messages created by the Java API are fairly uniform but there are many
occasions when you will use classes created by other programmers – database
drivers for instance. Here you won’t be sure how or if the messages have been
formatted. Error strings can end up being very long and may require the insertion
of newline characters in order to display properly. We will develop three different
methods of doing this, but for the moment have a quick look at the code below.

 1://
 2://ErrorDialogue class
 3://
 4://comments for javadoc below
 5:/** class ErrorDialogue
 6:* This class is for use in catch clauses. It will display
 7:* a dialogue box showing the error message.
 8:*/
 9://put imports here
 10:import javax.swing.*;
 11:import java.awt.*;
 12:import java.util.*;
 13:
 14:public class ErrorDialogue{
 15://data members
 16:private Component window;
 17:private final int increment = 30;
 18://
 19://constructors
 20://
 21:public ErrorDialogue(Exception e, Component window) {

An Exceptional Class Page 2

 22: this.window = window;
 23: doDialogue(e);
 24:}
 25://end constructors
 26://
 27://private functions
 28://
 29:private void doDialogue(Exception e) {
 30: Class error = e.getClass();
 31: String errname = error.getName();
 32: String message=e.getMessage();
 33: String messagetwo = e.getMessage();
 34: //check if contains newline
 35: if (e.getMessage().indexOf('\n') == -1) {
 36: //find length
 37: int length = message.length();
 38: //break at intervals
 39: if (length > increment){
 40: message=quickAndDirty(message);
 41: messagetwo=insertNewline(messagetwo);
 42: }
 43: }
 44: JOptionPane.showMessageDialog(window, "Error - " + message,
 45: errname, JOptionPane.WARNING_MESSAGE);
 46: JOptionPane.showMessageDialog(window, "Error - " + messagetwo,
 47: errname, JOptionPane.ERROR_MESSAGE);
 48:
 49:
 50:}
 51://
 52:/**
 53:* First method of parsing the string
 54:*/
 55:private String quickAndDirty(String message){
 56: //find space closest to midpoint
 57: StringBuffer sb= new StringBuffer(message);
 58: racter spac =new Character(' '); Cha e
 59: int strlength = message.length();
 60: int midpoint = strlength/2;
 61: for(int = midpoint; x < strlength; x++){ x
 62: if(new Character(sb.charAt(x)).equals(space)){
 63: sert(x,"\n"); sb.in
 64: break;
 65: }
 66: }
 67: String newstring = new String(sb);
 68: return newstring;
 69:}
 70://
 71:/**
 72:* second method of parsing the string
 73:*/
 74:private String insertNewline(String message){
 75: String tail = "";
 76: String head = "";

An Exceptional Class Page 3

 77: int newstart=29;
 78: int breakpoint=0;
 79: tail = message.substring(newstart);
 80: int length=message.length();
 81: head = message.substring(0,newstart);
 82: while(length>increment && tail.indexOf(" ")!=-1){
 83: //find next space, insert break and concatenate
 84: breakpoint = tail.indexOf(" ")+1;
 85: head += tail.substring(0,breakpoint);
 86: head += "\n";
 87: tail=tail.substring(breakpoint);
 88: length=tail.length();
 89: if (length > increment && tail.indexOf(" ",newstart)!=-1){
 90: head+=tail.substring(0,newstart);
 91: tail=tail.substring(newstart);
 92: }else{
 93: head+=tail;
 94: message = head;
 95: break;
 96: }
 97: }
 98: return message;
 99:}
 100://
 101:/**
 102:* Third method of parsing the string
 103:*/
 104:private String insertNewlineToken(String message){
 105: StringTokenizer stk = new StringTokenizer(message, " ", true);
 106: String temp = "";
 107: String newstring = "";
 108: int maxlength = increment;
 109: while(stk.hasMoreTokens()){
 110: temp = stk extToken(); .n
 111: newstring += temp;
 112: //add newline if longer and don't start with a space
 113: if (newstring. ngth() > maxlength && temp.equals(" ")){ le
 114: newstring += "\n";
 115: maxlength = newstring.length() + increment;
 116: }
 117: }
 118: return newstring;
 119:}
 120:public static void main (String [] args){
 121: String message = "Let's have a really long message here";
 122: message+=" so that we can test our class. ";
 123: message+="Blah blah blah blah ...";
 124: Exception e = new Exception(message);
 125: new ErrorDialogue(e, null);
 126: System.exit(0);
 127:}
 128:}//end class

An Exceptional Class Page 4

General Comments

The constructor’s first argument (line 21) is an object of the Exception class so
this class or any of its subclasses may be passed in. It won’t matter whether you
pass in an IOException, an SQLException or any other subtype. The second
argument is a Component that will act as the parent window for our dialogue box.
Again we have chosen Component because it is the parent object of the various
window subclasses.

On line 22 the constructor invokes a method, “doDialogue”, to extract the error
message and display it using a JOptionPane. The interesting part of this method
is the call to a function to insert a newline character but let’s first look at the
output.

Output

Compiling and running the application results in the following output:

Image 1

followed by:

Image 2

This is the same message formatted in two different ways. Now that we’ve seen
the output let’s have a look at how it’s done.

Parsing the String

An Exceptional Class Page 5

First Method

The code to create our first dialogue box is found on lines 55-69. Because the
String class does not have an “insertAt” method the error description is converted
to a StringBuffer. The space character closest to the midpoint is found and a
newline is inserted at that point. Basically the string is cut in half. Have a look at
Image 1 above to see what it looks like.

This method is easy to understand and easy to code; hence the method name.
Calling it “quickAndDirty” doesn’t quite do justice to this approach; it might well be
suitable in other circumstances. Here though, any string of a few hundred
characters would create problems. Pretty soon we’d have a dialogue box that
stretched across or beyond the screen width.

Second Method

The shortcomings of the first method spawned method number two. The pseudo
code for this method could be briefly written as:

get first portion of the string
get tail end
while not end of string

find next most proximate space in tail end
create substring of text up to this point
concatenate this new string with original portion
add on a newline

 end while

A reasonable enough starting point but turning this into suitable code didn’t prove
easy. Using almost twice as many lines of code as the “quickAndDirty” method,
we end up with the dialogue box shown as Image 2.

This method does exactly what is wanted but the code doesn’t have the clarity of
the first. This is important not only for writing the code but for maintaining it. This
code works – but like the driver who refuses to ask for directions, we came the
long way round. We grimly stayed behind the wheel and finally got there. There
must be a better way.

The Better Way

This time, before starting out, we pulled over to the side of the road, got out the
Java API and checked StringTokenizer for directions.

The first thing to notice is the StringTokenizer constructor that we chose to use
(line 105).; it takes three arguments, the String to be tokenized, the character to

An Exceptional Class Page 6

An Exceptional Class Page 7

use as a delimiter and finally a boolean that determines whether or not to return
the delimiter as a token. This is ideal because we are not discarding the spaces
between words.

The “hasMoreTokens” method is used to control our “while” loop (line 109).
Inside the loop we simply reconstruct our string including spaces and add a
newline when it exceeds the recommended length.

What could be simpler? Using one more line than the “quickAndDirty” method we
have created more functional code without sacrificing clarity.

Larger Issues

At this point it is fairly obvious what the final form of our code should be. Drop the
first two methods of parsing text, make a slight change to the “doDialogue”
method and call only one method and finally, remove “main”. However, there is a
larger lesson to be learned here.

Java is an object-oriented language with a large API. This means that much of
the work you need to do may already have been done. Look around and take
advantage of existing classes. In this case we found a class ideally suited to our
needs – StringTokenizer – that performed the job in many fewer lines and made
for more intelligible code. Programming with a high level language such as Java
is more than just formulating your algorithm and implementing it. While nobody
can know all of the classes available and all of their methods, a general
knowledge of the language’s capability can be enormously helpful and a real
timesaver. Do this and you won’t re-invent classes that already exist.

While you can create functional code without asking for directions, don’t. Roll
down the window and ask ‘cause you’ll get there faster and more easily.

About the Author

Peter Lavin runs a Web Design/Development firm in Toronto, Canada. For more
information visit http://www.softcoded.com. He may be reached at
peterlavin@sympatico.ca.

http://www.softcoded.com/
mailto:peterlavin@sympatico.ca

	An Exceptional Class
	Overview
	Introduction
	The Code
	General Comments
	Output

	Parsing the String
	First Method
	Second Method
	The Better Way

	Larger Issues
	About the Author

