

Lies, Damned Lies, Statistics
and SQL

by

Peter Lavin

December 17, 2003

Introduction

When I read about the Developer Shed December Giveaway Contest in the most
recent newsletter a thought occurred to me. Given the nature of the Developer
Shed Network of sites, there should be an objective, computer-driven way of
determining the winner. To remove all question of subjective bias in determining
the winner I would like to suggest an algorithm to do just this. I will use the data
provided by the hits statistics on the Dev Articles site. This should prove to be an
ideal way to achieve an unprejudiced solution.

This article will show how these hit statistics can quickly be imported into an
Access database and manipulated using SQL to objectively determine a winner.
If you wish you may perform the steps yourself or just read along.

Finding the Data

If you go to the Dev Articles site and look at the left sidebar you’ll find all the
category descriptions followed by the number of articles in that category. Click on
“PHP” to navigate to the most popular subject. You’ll be presented with a list of
the most recent submissions. Scroll to the bottom of the page, find and click the
link to the full list of articles. This is where we will find detailed information about
each submission.

Again the articles are sorted by the most recent submission – not a format that is
particularly useful to us at the moment. You could probably eyeball the list and
form a fairly accurate opinion of the most popular and most prolific authors but
we want to be objective and precise so we’re going to import this data into a
database. There’s far too much data here to even contemplate manual data
entry. Let’s see how we might import it with the least effort.

Capturing the Data

Select all of the articles and related information on the PHP page, avoiding the
table header, and copy them to the clipboard using menu options or simply by
simultaneously pressing “Control” and “c”. We’re going to use Access so I’ll
assume you are running Windows. Open WordPad – make sure you don’t use
Notepad. Paste the contents of the clipboard into WordPad. Looks like quite a
mess doesn’t it? I’ll bet you’re wondering how this can be any use to us – have
faith and you’ll see shortly.

We are now going to save this file in text format so choose “Save As” from the
“File” menu option. You should be presented with a file dialogue box. Choose

“text document” as the file type and change the file name to “hits.txt”. Make sure
you use the “.txt” extension. Access is picky about extensions when importing
files and misbehaves if it doesn’t get its own way.

Before proceeding let’s have a look at the “hits.txt” file using Word. Right click the
file name and open the “Send To” option. If you don’t find “MS Word“ here you
can add it by simply putting a shortcut in the “Send To” directory. If you don’t
want to do this just open “Word” and open the file, making sure that you select
the right file type from the “File Type” dropdown box.

It doesn’t look quite as funny as it did previously – in fact it looks rather
commonplace. To understand what’s going on the formatting marks need to be
displayed. This is done from the “Tools” menu, by clicking “Options”, and then the
“View” tab. Under “Formatting marks”, check the “All” box. Now you should see
the text separated by “arrows” and funny looking backward “P’s”. You’re looking
at tabs and carriage returns. In order for Access to import a text file it needs to be
able to tell where the columns and rows end. The tabs will separate columns and
the carriage returns will separate rows.

Your first line of text should look like the following:

If it does then everything should probably work just fine. Make sure you don’t
resave in Word format.

Into the Database

We are now ready to convert our text file into a database table. Access is not an
industrial-strength database like Oracle or DB2 and for this reason it is
sometimes maligned. However that may be, for the job we are about to do I
wouldn’t want any other database.

Open Access and create a new database. I’ve called mine “objectivewinner.mdb”
but choose whatever name you like. If you already know how to import text files
into a database you can skip this section and move on to the section entitled
“More Data”. For the others here’s how it’s done.

Using the “File” menu option choose “Get External data “ and “Import”. Make
sure you choose the “Text Files” file type and click on “hits.txt”. The “Import Text
Wizard” opens and makes your job very easy. Choose the defaults until Access
asks for a primary key. Choose “No primary Key”. Continue selecting the defaults
through to the end.

When Access has finished importing it will report that there were errors. For our
purposes, these are not important, so just ignore them. You should now have a
table in your database called “hits”. We’re going to clean it up in a minute but let’s
import some more data first.

More Data

To ensure the objectivity of our exercise let’s randomly choose two other
categories to import, namely the “Java” articles and the “MySQL” articles. (Be
assured that the fact that the author of this article has published in both these
categories has no bearing whatsoever.) Repeat the steps above to import these
categories but make one exception, - choose to import your data into the existing
table “hits”.

Clean up the Database

Open the table “hits” in design view and delete “Field1” and “Field2”. These fields
are not used so nothing will be lost. Rename the remaining fields “Title”, Author”
and “Hits” in that order. We’re now ready to query the database and very soon
we’ll have the name of December’s winner.

The Contest SQL

The algorithm that will unlock the puzzle of December’s winner is shown below:

SELECT TOP 1 [Author], SUM([Hits])
AS SumOfHits, Count([author])
AS numarticles, Round((Sum([hits])/Count([author])))
AS avghits
FROM hits
GROUP BY [Author]
HAVING Count([author]) > 2
ORDER BY Round(Sum([hits])/Count([author])) DESC

Cut and paste this code into an SQL query window but don’t run it just yet. Let’s
first say a few brief words about it.

Most of you are probably familiar with the common SQL keyword “SELECT” so
let’s not dwell on it. The predicate “TOP 1” will ensure that only one record is
returned – after all we are really only interested in the winner. Next comes the list
of the fields to be retrieved. Obviously we want to include the Author field – we
are going to need the winner’s name. “Sum([hits])” is an aggregate function that
does exactly what you might think – namely it totals the “hits” field. Following this

is the keyword “AS” which will allow us to give a meaningful alias to this
aggregate function. We’ve chosen the name “SumofHits” not too original perhaps
but descriptive of the value returned.

After this, the “Round” function will ensure that no fractional values are returned.
The formula inside the “Round” function will give us the average number of hits
by author. This will be one of our unprejudiced criteria for determining the winner.

Where you have a select statement there is always a “FROM” clause lurking
nearby. Since we only have one table in our database the table we’re selecting
from is “hits”.

Whenever there is an aggregate function in a select statement we must group by
any simple fields that appear in that select statement. Hence, we have “GROUP
BY [Author]”. “HAVING” clauses are simply the replacement for “WHERE”
clauses when a “GROUP BY” has been used. The expression “Count([author]) >
2” will ensure that our results are not skewed by statistical anomalies, further
enhancing the objectivity of our results

Finally the “ORDER BY” clause will arrange the records in descending order
starting with the author with the best average number of hits.

Query Results

I don’t know if you can imagine my surprise when I saw the results returned by
our query. If I was simply to report them you might not believe me so I’m going to
show you them using a screen capture.

In cases such as this, a more quarrelsome audience might question the
credibility of our methods. Fortunately, this description does not apply to the
readers of the Developer Shed Network especially at this time of year when they
want to stay off the naughty list, and, frankly, given the thorough efforts at
objectivity, I don’t think that there can be any reasonable grounds for dispute.

Conclusion

We were able to quickly retrieve data from the Dev Articles site and save it as a
text file with tab-separated values. This enabled us to import the file into a table

in Access. Querying this data using SQL statements allowed us to arrive at an
objective determination of the December contest winner.

Finally, to the prize committee I would like to say “Thank you. Don’t wrap it I’m
not putting it under the tree.”

About the Author

Peter Lavin runs a Web Design/Development firm in Toronto, Canada. For more
information visit http://www.softcoded.com/. He may be reached at
peterlavin@sympatico.ca.

http://www.softcoded.com/
mailto:peterlavin@sympatico.ca

	Lies, Damned Lies, Statistics
	and SQL
	Introduction
	Finding the Data
	Capturing the Data
	Into the Database
	More Data
	Clean up the Database
	The Contest SQL
	Query Results
	Conclusion
	About the Author

