
Favourite MySQL Queries

by Peter Lavin

Overview

Being a web developer requires that you have a variety of skills and perform a number of
different jobs. There may be long periods when you are working with a variety of
different databases and then extended stretches when you are not working with any
database at all. Being a Jack-of-All-Trades means that SQL syntax may not always be at
your fingertips. For this reason a reference of useful MySQL queries comes in handy.

Getting Started

The basic syntax of a SELECT query even with a WHERE clause a GROUP BY and any
other permutation you might want to think of, is not too difficult to remember and does
not vary significantly across different dialects of SQL. Likewise with INSERT and
UPDATE queries. But other queries, especially those that you do not use on a regular
basis, can easily slip from memory. This article will deal with three basic types of
queries, data definition, date manipulation and some miscellaneous queries. Creating a
table can be a fairly complex matter, date manipulation is not simple or intuitive in any
programming language and miscellaneous queries are hard to remember precisely
because they are miscellaneous.

Data Definition

Let's start where it all has to start – by looking at data definition and throwing in a few
metadata queries along the way. Creating a database is fairly simple but the intricacies of
table creation can easily slip your mind. Because the tables we create often have
similarities with tables we have created in the past, one option would be to save copies of
the data definition statements used when creating those tables; but why do what has
already been done for you? USE the database where the table resides and execute the
query, "SHOW CREATE TABLE tblname;". This statement will give the exact SQL
necessary to create this table. Remember this one simple statement and you can
immediately have access to the SQL needed to recreate any table. Here's an example of
what might be returned:

CREATE TABLE `tblbooks` (
`inventorynumber` int(11) NOT NULL auto_increment,
`cat` char(3) NOT NULL default '',
`catalogue` varchar(50) default NULL,
`isbn` varchar(10) default NULL,

`title` varchar(150) NOT NULL default '',
`author` varchar(100) NOT NULL default '',
`condition` enum('Very Fine','Fine','Near Fine','Very
Good','Good','Fair','Poor','Ex-Library','Book Club','Binding
Copy') default 'Near Fine',
`binding` enum('Hardcover','Paper') default 'Hardcover',
`pagecount` int(11) default NULL,
`description` varchar(255) default NULL,
`signed` tinyint(4) NOT NULL default '0',
`firstedition` tinyint(4) NOT NULL default '0',
`jacketed` tinyint(4) NOT NULL default '0',
`jacketcondition` enum('Very Fine','Fine','Near Fine','Very
Good','Good','Fair','Poor') default NULL,
`deficiencies` varchar(255) default NULL,
`cost` float(6,2) NOT NULL default '0.00',
`publicationdate` varchar(4) default NULL,
`publisher` varchar(4) NOT NULL default '',
`image` varchar(20) default NULL,
`sold` tinyint(4) NOT NULL default '0',
PRIMARY KEY (`inventorynumber`),
KEY `authidx` (`author`),
KEY `titleidx` (`title`),
KEY `sold` (`sold`)
) TYPE=MyISAM;

Okay, it's not the simplest table structure but you can quickly see, for example, how to
create a float field suitable for currency, the syntax for "enum", how to create indices and
a number of other things.

Seeing how a table is created may also help you determine how it might be improved.
There are a few things that might be changed in the above table and changing the
structure of a table is another thing that is easy to forget. Resist the urge to use the
keyword UPDATE. You can only UPDATE data not a table's structure. What you want
to do is ALTER the table. In the table above the "jacketcondition" field really should
have a default value. This can be changed in the following way:

ALTER TABLE tblbooks
 CHANGE jacketcondition jacketcondition
 ENUM('Very Fine','Fine','Near Fine','Very
Good','Good','Fair','Poor')
 DEFAULT 'Near Fine';

Sorry, but you do have to duplicate all that information about the field just to set a default
value.

Favourite MySQL Queries … Page 1

Some of us get things right the first time around but I often find that I need to add fields
to a table after initially creating it. Our "tblbooks" really should have a field that shows
the retail price. Here's how to add it:

ALTER TABLE tblbooks
 ADD COLUMN listprice float(6,2) NOT NULL default '0.00'
 AFTER cost;

You don't just want to add fields but you want to place them at the right position within
the table. Without the AFTER clause the newly added field would be the last field
whereas, its more natural position is after the "cost" field.

We don't always notice how our tables might be improved but fortunately there is a query
to remedy that: (Note the British spelling of the function ANALYSE() unlike the spelling
of the ANALYZE keyword.)

SELECT *
 FROM `tblbooks`
 PROCEDURE ANALYSE();

 My editor will think I'm trying to pad the word count so I won't display the result set of
this query, but it does show actual minimum and maximum values for data in the various
fields and makes some useful suggestions about the best field size. The optimal field type
is often inappropriately suggested as ENUM but, all in all, this is a useful query to have
under your belt. Averages and standard deviations are also shown so this is a good way to
get a quick overview of your data.

Given that versions of MySQL prior to 4 cannot use nested SQL statements knowing the
syntax for creating temporary tables using a SELECT statement is also useful.

CREATE TEMPORARY TABLE tbltemp
 SELECT
 CONCAT(fname, " " ,lname) AS Name,
 courses.name AS Course,
 CEIL(SUM(weight.weight * mark)-.5) AS Course_Average
 FROM marks, weight, students, courses
 WHERE marks.studentid = students.studentid
 AND courses.code = marks.courseid
 AND marks.courseid=weight.courseid
 AND marks.assessment = weight.assessment
 GROUP BY marks.studentid, marks.courseid;

Favourite MySQL Queries … Page 2

After creating this table you can run the secondary query:

SELECT Name, AVG(Course_Average)
 FROM tbltemp
 GROUP BY Name;

in order to get an overall average mark.

If you want to know the number of records in each table in your database you don't need
to use COUNT(*) with every table. Just :

SHOW TABLE STATUS;

This query gives a quick overview of the state of the tables in your database including the
number of rows in each table.

Before we leave data definition we should say something about mysqldump. It's well
documented in the MySQL manual but it won't hurt to repeat the basics here. Properly
speaking mysqldump isn't a query but a utility. It's a very valuable one for the web
developer because usually a local database is created for testing purposes and later
uploaded to a web server. The best way to create a copy for upload is:

mysqldump --opt databasename -h hostname -u username -p >
databasename.sql

After executing a database dump, the file "databasename.sql" will contain all the SQL
statements necessary to recreate your database structure and content. If you are using a
programme such as phpMyAdmin you can upload it and execute it in an SQL query
window. If not, then you can recreate your tables in the following way:

mysql databasename -u username -p password -h hostname <
databasename.sql

Don't forget to create your database first.

Manipulating Dates

No matter what programming language you are using manipulating date or time fields is
always a challenge. Often we require portions of dates or we want a humanly useable
version of the date rather than the seemingly arbitrary numbers stored in a database. To
extract the month and the day of the month as numbers do the following (assuming of
course that "whenadded" is a date type field):

Favourite MySQL Queries … Page 3

SELECT item, MONTH(whenadded)AS mon,
 DAYOFMONTH(whenadded)AS dayofmon
 FROM tblbulletin
 WHERE year(whenadded)=YEAR(NOW())
 ORDER BY whenadded DESC LIMIT 8;

This query extracts a numerical representation of the month and day for items added to
this table in the current year and is perhaps most useful when mathematical operations
need to be performed. If the date is needed for display purposes only, the function
date_format is, perhaps, the better one to use.

SELECT title, description, topic, username, contents,
 DATE_FORMAT(whenadded,'%M %e,%Y') AS
 formatted
 FROM tblitem WHERE id = 1;

Here the date will be returned in the format "February 20, 2005".

Often you will want to do date comparisons, as in the following query:

SELECT MONTHNAME(fldwhen) AS fldmonth,
 DAYOFMONTH(fldwhen) AS fldday, YEAR(fldwhen) AS fldyear,
 fldtitle, flddescription
 FROM tblconcerts
 WHERE TO_DAYS(fldwhen) >= TO_DAYS(NOW())
 Order BY fldwhen ASC
 LIMIT 0,4;

Using the TO_DAYS() function along with the operator ">=", allows you to show only
upcoming concerts and the LIMIT clause ensures that only the four closest to the current
date are shown.

Date subtraction can be used to select more recent items in a list. For example:

SELECT description, url, target,
 IF(whenadded > (SUBDATE(CURDATE(),
 INTERVAL '14' DAY)), 'hot', 'info') AS cssclass
 FROM tbllinks
 ORDER BY cssclass, UCASE(description)";

Favourite MySQL Queries … Page 4

This query uses "if else" logic to separate out new links and also creates the opportunity
to use the field ‘cssclass' as a CSS style name in order to format these new links in a
distinctive way.

Times up so here's one last query to select users who have been active in an online chat
room within the last 10 minutes:

SELECT username FROM tblonline
 WHERE fldwhen > (SUBDATE(CURTIME(),INTERVAL '10' MINUTE));

Miscellaneous

Because they aren't really related to anything else miscellaneous queries can be the
hardest to remember. While updating a password is not difficult – what comes after can
create problems.

UPDATE user
 SET password = PASSWORD("reddevils")
 WHERE user = "root";

Just don't forget to FLUSH afterwards:

FLUSH PRIVILEGES;

And don't forget to LOCK your tables if concurrency issues might arise:

LOCK TABLES tblbooks WRITE,
 tblorderitem WRITE;

It's not particularly difficult to remember how to alias tables but I always want to include
an AS so I'll give an example here:

SELECT l.description, l.url, l.target, lt.description
 AS heading
 FROM links l, linktypes lt
 WHERE l.typeid = lt.id
 ORDER BY lt.id, UCASE(l.description)

Favourite MySQL Queries … Page 5

Favourite MySQL Queries … Page 6

The syntax for setting variables is a bit idiosyncratic and that makes it a good candidate
for inclusion. Here's how to set one:

SET @invid :=1;

Referencing that variable is exactly what you would expect:

SELECT CONCAT(e.firstname, " ", e.lastname) AS name,
 w.description, (i.hours * w. rate) AS billing, c.companyname
 FROM invoiceitem i, worktypes w, employees e, companies c,
 invoices inv, domains d
 WHERE i.worktype = w.id AND i.invoicenumber = @invid
 AND d.domainname = inv.domainname
 AND d.companyid = c.id;

Finally, a last query to show how to randomly select your quotation of the day:

SELECT * FROM quotations
 ORDER BY RAND()
 LIMIT 0, 1;

Memory

It often seems that for every new thing we learn something else is forgotten. Writing
things down helps in remembering them but it sometimes happens that even "auld
acquaintance" are forgot, so I know that I will be referring back to this document at some
time. Here's hoping it proves as useful for you in remembering "auld lang syne".

About the Author

Peter Lavin runs a Web Design/Development firm in Toronto, Canada. For more
information visit http://www.softcoded.com. He may be reached at
peterlavin@sympatico.ca.

http://www.softcoded.com/
mailto:peterlavin@sympatico.ca

	Favourite MySQL Queries
	Overview
	Getting Started
	Data Definition
	Manipulating Dates
	Miscellaneous
	Memory
	About the Author

